题目内容
(2011•浙江)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是 _________ .
∵4x2+y2+xy=1
∴(2x+y)2﹣3xy=1
令t=2x+y则y=t﹣2x
∴t2﹣3(t﹣2x)x=1
即6x2﹣3tx+t2﹣1=0
∴△=9t2﹣24(t2﹣1)=﹣15t2+24≥0
解得
∴2x+y的最大值是
∴(2x+y)2﹣3xy=1
令t=2x+y则y=t﹣2x
∴t2﹣3(t﹣2x)x=1
即6x2﹣3tx+t2﹣1=0
∴△=9t2﹣24(t2﹣1)=﹣15t2+24≥0
解得
∴2x+y的最大值是
练习册系列答案
相关题目