ÌâÄ¿ÄÚÈÝ

ÉèA(xA,yA)£¬B(xB,yB)ΪƽÃæÖ±½Ç×ø±êϵÉϵÄÁ½µã,ÆäÖÐxA,yA,xB,yBÎZ.Áî¡÷x=xB-xA£¬¡÷y=yB-yA,Èô|¡÷x|+|¡÷y|=3£¬ÇÒ|¡÷x|¡¤|¡÷y|¡Ù0,Ôò³ÆµãBΪµãAµÄ¡°Ïà¹Øµã¡±,¼Ç×÷£ºB=f(A).
(1)ÇëÎÊ:µã(0,0)µÄ¡°Ïà¹Øµã¡±Óм¸¸ö?ÅжÏÕâЩµãÊÇ·ñÔÚͬһ¸öÔ²ÉÏ,ÈôÔÚ,д³öÔ²µÄ·½³Ì£»Èô²»ÔÚ£¬ËµÃ÷ÀíÓÉ£»
(2)ÒÑÖªµãH(9,3),L(5,3),ÈôµãMÂú×ãM=f(H),L=f(M),ÇóµãMµÄ×ø±ê£»
(3)ÒÑÖªP0(x0,y0)(x0ÎZ,y0ÎZ)Ϊһ¸ö¶¨µã, ÈôµãPiÂú×ãPi=f (Pi-1),ÆäÖÐi=1,2,3,¡¤¡¤¡¤,n£¬Çó|P0Pn|µÄ×îСֵ£®

£¨1£©x²+y²=5
£¨2£©M(7,2)»òM(7,4).
£¨3£©µ±Ê±, |P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0£»
µ±n=2k+1,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ1.

½âÎöÊÔÌâ·ÖÎö£º½â: (1)ÒòΪ|¡÷x|+|¡÷y|=3(|¡÷x|,|¡÷y|Ϊ·ÇÁãÕûÊý),
¹Ê|¡÷x|=1,|¡÷y|=2»ò|¡÷x|=2,|¡÷y|=1,ËùÒÔµã(0,0)µÄ¡°Ïà¹Øµã¡±ÓÐ8¸ö .
ÓÖÒòΪ(¡÷x)²+(¡÷y)²=5,¼´(¡÷x-0)²+(¡÷y-0)²="5" .
ËùÒÔÕâЩ¿ÉÄÜÖµ¶ÔÓ¦µÄµãÔÚÒÔ(0,0)ΪԲÐÄ,Ϊ°ë¾¶µÄÔ²ÉÏ£¬
·½³ÌΪx²+y²="5" .                     3·Ö
(2)ÉèM(xM,yM),
ÒòΪM=f(H),L=f(M),
ËùÒÔÓÐ|xM-9|+|yM-3|="3," |xM-5|+|yM-3|=3,
ËùÒÔ|xM-9|=|xM-5|,ËùÒÔxM=7, yM=2»òyM=4,
ËùÒÔM(7,2)»òM(7,4).                6·Ö
(3) µ±n=1ʱ,¿ÉÖª|P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0 ;
µ±n=3ʱ,¶ÔÓÚµãP,°´ÕÕÏÂÃæµÄ·½·¨Ñ¡Ôñ¡°Ïà¹Øµã¡±,¿ÉµÃP3(x0,y0+1):
P0(x0,y0)¡úP1(x0+2,y0+1)¡úP2(x0+1,y0+3) ¡úP3(x0,y0+1)
¹Ê|P0Pn|µÄ×îСֵΪ1,
µ±n=2k+3, kÎN *ʱ,¶ÔÓÚµãP,¾­¹ý2k´Î±ä»»»Øµ½³õʼµãP0(x0,y0),È»ºó¾­¹ý3´Î±ä»»»Øµ½Pn(x0,y0+1),¹Ê|P0Pn|µÄ×îСֵΪ1.
×ÛÉÏ,µ±Ê±, |P0Pn|µÄ×îСֵΪ;
µ±n=2k,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ0£»
µ±n=2k+1,kÎN *ʱ, |P0Pn|µÄ×îСֵΪ1.         10·Ö
¿¼µã£ºÔ²µÄ·½³Ì£¬Á½µã¾àÀë
µãÆÀ£ºÖ÷ÒªÊÇ¿¼²éÁËÔ²µÄ·½³ÌµÄÇó½â£¬ÒÔ¼°Á½µã¾àÀëµÄ×îÖµ£¬ÊôÓÚÖеµÌâ¡£

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø