题目内容
【题目】已知为坐标原点,椭圆的右焦点为,离心率为,过点的直线与相交于两点,点为线段的中点.
(1)当的倾斜角为时,求直线的方程;
(2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1)(2)存在;定点
【解析】
(1)由题得,解得,由,得,可得椭圆方程,与直线方程联立,利用韦达定理求出中点坐标,进而可得直线的方程;(2)直线的斜率不为0时,设,直线的方程为,与椭圆方程联立,利用韦达定理,结合平面向量数量积公式可得在x轴上存在定点,使得为定值,再验证直线的斜率为0的情况即可.
(1)由题得,解得,由,得,故椭圆方程为,
设,易知直线的方程为,由,得,
于是,
从而,故,
所以直线的方程为.
(2)①当直线的斜率不为0时,设,直线的方程为,
由,得,所以
所以
,
由,得,故此时点,;
②当直线的斜率为0时,.
综上,在x轴上存在定点,使得为定值.
【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:
质量指标检测分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班组生产的产品件数 | 7 | 18 | 40 | 29 | 6 |
乙班组生产的产品件数 | 8 | 12 | 40 | 32 | 8 |
(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;
(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?
甲班组 | 乙班组 | 合计 | |
合格品 | |||
次品 | |||
合计 |
(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元;乙公司无底薪,40单以内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元.假设同一公司的送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:
甲公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 20 | 40 | 20 | 10 | 10 |
乙公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 10 | 20 | 20 | 40 | 10 |
(1)现从甲公司记录的这100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(2)若将频率视为概率,回答以下问题:
(i)记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;
(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.
【题目】上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.
由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:
黄赤交角 | |||||
正切值 | 0.439 | 0.444 | 0.450 | 0.455 | 0.461 |
年代 | 公元元年 | 公元前2000年 | 公元前4000年 | 公元前6000年 | 公元前8000年 |
根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )
A.公元前2000年到公元元年B.公元前4000年到公元前2000年
C.公元前6000年到公元前4000年D.早于公元前6000年