题目内容
【题目】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球,求:
(1)取出1球是红球的概率;
(2)取出1球是绿球或黑球或白球的概率.
【答案】(1);(2).
【解析】
(1)按照古典概型的计算公式即得解;
(2)利用古典概型的计算公式以及概率的加法即得解.
(1)由题意知本题是一个古典概型,
试验包含的基本事件是从12个球中任取一球共有12种结果;
满足条件的事件是取出的球是红球共有5种结果,
∴概率为.
(2)由题意知本题是一个古典概型,
试验包含的基本事件是从12个球中任取一球共有12种结果;
满足条件的事件是取出的一球是绿球或黑球或白球共有7种结果,
∴概率为,
即取出的1球是红球或黑球的概率为;
取出的1球是绿球或黑球或白球的概率为.
【题目】总体由编号为的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为( )
7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
A.B.C.D.
【题目】2018年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.
组号 | 分组 | 频数 | 频率 |
1 | 5 | 0.05 | |
2 | 0.35 | ||
3 | 30 | ||
4 | 20 | 0.20 | |
5 | 10 | 0.10 | |
合计 | 100 | 1 |
(1)求的值,并在答题卡上作出这些数据的频率分布直方图;(用阴影涂黑)
(2)根据频率分布直方图估计该组数据的众数及中位数(求中位数精确到);
(3)现从第、、组中用分层抽样的方法抽取人参加校“中华诗词比赛”,经过比赛后从这人中选拔人组成该校代表队,求这人来自不同组别的概率.
【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
网购金额(单位:千元) | 频数 | 频率 | 网购金额(单位:千元) | 频数 | 频率 | |
[0,0.5) | 3 | 0.05 | [1.5,2) | 15 | 0.25 | |
[0.5,1) | [2,2.5) | 18 | 0.30 | |||
[1,1.5) | 9 | 0.15 | [2.5,3] |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定,,,的值,并补全频率分布直方图;
(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
【题目】一个车间为了规定工时定额,需要确定加工某种零件所花费的时同,为此进行了6次试验,收集数据如下:
零件数x(个) | 1 | 2 | 3 | 4 | 5 | 6 |
加工时间y(小时) | 3.5 | 5 | 6 | 7.5 | 9 | 11 |
(1)在给定的坐标系中画出散点图,并指出两个变量是正相关还是负相关;
(2)求回归直线方程;
(3)试预测加工7个零件所花费的时间?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.