题目内容
6.已知抛物线C:y2=4x,以M(1,2)为直角顶点作该抛物线的内接直角三角形MAB,若直线AB过定点P,则点P的坐标为(5,-2).分析 设A$(\frac{{y}_{1}^{2}}{4},{y}_{1})$,B$(\frac{{y}_{2}^{2}}{4},{y}_{2})$.利用$\overrightarrow{MA}⊥\overrightarrow{MB}$,可得$\overrightarrow{MA}•\overrightarrow{MB}$=0,化为y1y2+2(y1+y2)+20=0.代入直线AB的方程为:y-y1=$\frac{{y}_{2}-{y}_{1}}{\frac{{y}_{2}^{2}}{4}-\frac{{y}_{1}^{2}}{4}}$$(x-\frac{{y}_{1}^{2}}{4})$,化简整理即可得出.
解答 解:设A$(\frac{{y}_{1}^{2}}{4},{y}_{1})$,B$(\frac{{y}_{2}^{2}}{4},{y}_{2})$.
∵$\overrightarrow{MA}⊥\overrightarrow{MB}$,
$\overrightarrow{MA}$=$(\frac{{y}_{1}^{2}}{4}-1,{y}_{1}-2)$,$\overrightarrow{MB}$=$(\frac{{y}_{2}^{2}}{4}-1,{y}_{2}-2)$.
∴$\overrightarrow{MA}•\overrightarrow{MB}$=$(\frac{{y}_{1}^{2}}{4}-1)(\frac{{y}_{2}^{2}}{4}-1)+({y}_{1}-2)({y}_{2}-2)$=0,
化为y1y2+2(y1+y2)+20=0.
直线AB的方程为:y-y1=$\frac{{y}_{2}-{y}_{1}}{\frac{{y}_{2}^{2}}{4}-\frac{{y}_{1}^{2}}{4}}$$(x-\frac{{y}_{1}^{2}}{4})$,
化为:(y1+y2)y-y1y2=4x.
令y=-2,则20=4x,解得x=5.
∴直线AB过定点P(5,-2).
故答案为:(5,-2).
点评 本题考查了抛物线的标准方程及其性质、向量垂直与数量积的关系、点斜式,考查了推理能力与计算能力,属于中档题.
A. | 2015 | B. | 1 | C. | -1 | D. | 0 |
A. | 2kπ+$\frac{π}{4}$ | B. | 2kπ-$\frac{π}{4}$ | C. | kπ+$\frac{π}{4}$ | D. | kπ-$\frac{π}{4}$,其中k∈Z |