题目内容
【题目】已知函数.
(1)讨论的单调性;
(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.
【答案】(1)当时,在上递增,在上递减;
当时,在上递增,在上递减,在上递增;
当时,在上递增;
当时,在上递增,在上递减,在上递增;
(2)证明见解析
【解析】
(1)对求导,分,,进行讨论,可得的单调性;
(2)在定义域内是是增函数,由(1)可知,,设,可得,则,设,对求导,利用其单调性可证明.
解:的定义域为,
因为,
所以,
当时,令,得,令,得;
当时,则,令,得,或,
令,得;
当时,,
当时,则,令,得;
综上所述,当时,在上递增,在上递减;
当时,在上递增,在上递减,在上递增;
当时,在上递增;
当时,在上递增,在上递减,在上递增;
(2)在定义域内是是增函数,由(1)可知,
此时,设,
又因为,则,
设,则
对于任意成立,
所以在上是增函数,
所以对于,有,
即,有,
因为,所以,
即,又在递增,
所以,即.
练习册系列答案
相关题目