题目内容
1.已知:数列{an},{bn}满足$\left\{\begin{array}{l}{{a}_{n}=2{a}_{n-1}+{b}_{n-1}}\\{{b}_{n}=3{a}_{n-1}+4{b}_{n-1}}\end{array}\right.$(n≥2)且a1=2,b1=3,求an,bn的通项公式.分析 数列{an},{bn}满足$\left\{\begin{array}{l}{{a}_{n}=2{a}_{n-1}+{b}_{n-1}}\\{{b}_{n}=3{a}_{n-1}+4{b}_{n-1}}\end{array}\right.$(n≥2)且a1=2,b1=3,可得a2=7,b2=18.变形可得:${a}_{n}=\frac{2}{3}{b}_{n}-\frac{5}{3}{b}_{n-1}$,当n≥3时,${a}_{n-1}=\frac{2}{3}{b}_{n-1}-\frac{5}{3}{b}_{n-2}$.代入可得:bn-bn-1=5(bn-1-bn-2).利用等比数列的前n项和公式可得:bn-bn-1=3×5n-1.再利用bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1可得bn,进而得到an.
解答 解:∵数列{an},{bn}满足$\left\{\begin{array}{l}{{a}_{n}=2{a}_{n-1}+{b}_{n-1}}\\{{b}_{n}=3{a}_{n-1}+4{b}_{n-1}}\end{array}\right.$(n≥2)且a1=2,b1=3,
∴a2=7,b2=18,a3=32,b3=93.
变形可得:3an-2bn=3bn-1-8bn-1=-5bn-1,∴${a}_{n}=\frac{2}{3}{b}_{n}-\frac{5}{3}{b}_{n-1}$,
∴当n≥3时,${a}_{n-1}=\frac{2}{3}{b}_{n-1}-\frac{5}{3}{b}_{n-2}$.
∴bn=2bn-1-5bn-2+4bn-1,
变形为:bn-bn-1=5(bn-1-bn-2).
∴数列{bn-bn-1}(n≥2)是等比数列,首项为15,公比为5,
∴bn-bn-1=15×5n-2=3×5n-1.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=3(5n-1+5n-2+…+5)+3
=$3×\frac{5({5}^{n-1}-1)}{5-1}$+3
=$\frac{3×{5}^{n}-3}{4}$.
∴当n≥2时,an=$\frac{2}{3}×\frac{3×{5}^{n}-3}{4}$-$\frac{5}{3}×\frac{3×{5}^{n-1}-3}{4}$=$\frac{{5}^{n}+3}{4}$.
当n=1时上式也成立.
∴an=$\frac{{5}^{n}+3}{4}$.
点评 本题考查了等比数列的通项公式及其前n项和公式、“累加求和”方法、递推关系的应用,考查了推理能力与计算能力,属于中档题.
A. | (0,$\frac{π}{4}$] | B. | (2kπ,2kπ+$\frac{π}{4}$],k∈Z | C. | (kπ,kπ+$\frac{π}{4}$],k∈Z | D. | (kπ-$\frac{π}{2}$,kπ+$\frac{π}{4}$],k∈Z |