题目内容
【题目】在平面直角坐标系中,椭圆:的离心率为,左、右顶点分别为、,线段的长为4.点在椭圆上且位于第一象限,过点,分别作,,直线,交于点.
(1)若点的横坐标为-1,求点的坐标;
(2)直线与椭圆的另一交点为,且,求的取值范围.
【答案】(1);(2)
【解析】
(1)先求出椭圆的方程,设直线的方程为.分别表示出直线与的方程,联立方程组,求出点的坐标,利用点的横坐标为,求出,进而可求出点的坐标;(2 )联立消去,整理得,求得.由,可得 ,结合即可求出的取值范围.
(1)设直线的斜率为,,
由题意得,,
所以,,,
所以椭圆的方程为.
因为点在椭圆上,且位于第一象限,
所以,,直线的方程为.
因为,
所以,
所以直线的方程为.
联立,解得,
即.
因为,所以,
则直线的方程为.
因为,所以.
则直线的方程为.
联立,解得,
即.
因为点的横坐标为-1,
所以,解得.
因为,
所以.将代入可得,
点的坐标为.
(2)设,,又直线的方程为.
联立消去,整理得,
所以,
解得.
因为,
所以 .
因为,
所以.
练习册系列答案
相关题目
【题目】2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:
评价等级 | ★ | ★★ | ★★★ | ★★★★ | ★★★★★ |
分数 | 0~20 | 2140 | 4160 | 61~80 | 81100 |
人数 | 5 | 2 | 12 | 6 | 75 |
(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;
(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.
(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;
(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.