题目内容
用反证法证明命题“三角形的内角至多有一个钝角”,正确的假设是________.
三角形的内角中至少有两个钝角
分析:根据命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,从而得出结论.
解答:由于命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,
故用反证法证明命题“三角形的内角至多有一个钝角”时,应假设至少有两个钝角,
故答案为:三角形的内角中至少有两个钝角.
点评:解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.
分析:根据命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,从而得出结论.
解答:由于命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,
故用反证法证明命题“三角形的内角至多有一个钝角”时,应假设至少有两个钝角,
故答案为:三角形的内角中至少有两个钝角.
点评:解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目