题目内容
规定C | m x |
x(x-1)…(x-m+1) |
m! |
(1) 求C-155的值;
(2)组合数的两个性质:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m.是否都能推广到Cxm(x∈R,m是正整数)的情形?
若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
分析:(1)根据所给的组合数公式,写出C-155的值,这里与平常所做的题目不同的是组合数的下标是一个负数,在本题的新定义下,按照一般组合数的公式来用.
(2)Cnm=Cnn-m不能推广到Cxm的情形,举出两个反例
,
无意义;Cnm+Cnm-1=Cn+1m能推广到Cxm的情形,可以利用组合数的公式来证明,证明的方法同没有推广之情相同.
(2)Cnm=Cnn-m不能推广到Cxm的情形,举出两个反例
C | 1
|
C |
|
解答:解:(1)C-155=
=-11628;
(2)Cnm=Cnn-m不能推广到Cxm的情形,
例如
,
无意义;
Cnm+Cnm-1=Cn+1m能推广到Cxm的情形,
Cxm+Cxm-1=
+
=
=
=
=Cx+1m.
-15(-16)(-17)(-18)(-19) |
1•2•3•4•5 |
(2)Cnm=Cnn-m不能推广到Cxm的情形,
例如
C | 1
|
C |
|
Cnm+Cnm-1=Cn+1m能推广到Cxm的情形,
Cxm+Cxm-1=
x(x-1)(x-m+1) |
m ! |
x(x-1)(x-m+2) |
(m-1) ! |
=
x(x-1)(x-m+1)+x(x-1)(x-m+2)•m |
m ! |
=
x(x-1)(x-m+2)(x-m+1+m) |
m ! |
=
(x+1)x(x-1)(x-m+2) |
m ! |
点评:本题考查组合数公式,不是在一般的情况下应用组合数公式,而是对于组合数公式推广使用,是一个中档题,题目解起来容易出错.这种题目对于学生帮助不大.
练习册系列答案
相关题目