题目内容
(2012•天津模拟)设y=f(x)在(-∞,1]上有定义,对于给定的实数K,定义fk(x)=
,给出函数f(x)=2x+1-4x,若对于任意x∈(-∞,1],恒有fk(x)=f(x),则( )
|
分析:由已知条件可得,k≥f(x)在(-∞,1]恒成立,即k≥f(x)max,结合指数函数与二次函数的性质可求函数f(x)的最大值,从而可求
解答:解:因为对于任意的x∈(-∞,+∞),恒有fk(x)=f(x),
由已知条件可得,k≥f(x)在(-∞,1]恒成立
∴k≥f(x)max
∵f(x)=2x+1-4x,=2•2x-22x,x∈(-∞,1],令t=2x,t∈(0,2]
则f(t)=2t-t2=-(t-1)2+1,t∈(0,2]
∴在t∈(0,2]上的最大值为f(1)=1
∴k≥1 即k的最小值为1
故选D
由已知条件可得,k≥f(x)在(-∞,1]恒成立
∴k≥f(x)max
∵f(x)=2x+1-4x,=2•2x-22x,x∈(-∞,1],令t=2x,t∈(0,2]
则f(t)=2t-t2=-(t-1)2+1,t∈(0,2]
∴在t∈(0,2]上的最大值为f(1)=1
∴k≥1 即k的最小值为1
故选D
点评:本题以新定义为载体,主要考查了阅读、转化的能力,解决本题的关键是利用已知定义转化为函数的恒成立问题,结合二次函数的性质可进行求解.
练习册系列答案
相关题目