题目内容
【题目】如图, 是边长为的菱形, , 平面, 平面, .
(Ⅰ)求证: ;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】试题分析:(I)连接,根据菱形的性质可知,结合,可得平面,垂直同一个平面的两条直线平行,故四点共面,故.(2)以为坐标原点,分别以, 的方向为轴, 轴的正方向,建立空间直角坐标系.计算直线的方向向量和平面的法向量,利用线面角公式求得线面角的正弦值.
试题解析:
(Ⅰ)证明:连接,
因为是菱形,所以.
因为平面, 平面,
所以.
因为,所以平面.
因为平面, 平面,所以.
所以, , , 四点共面.
因为平面,所以.
(Ⅱ)如图,以为坐标原点,分别以, 的方向为轴, 轴的正方向,建立空间直角坐标系.
可以求得, , , , .
所以, .
设平面的法向量为,
则即
不妨取,则平面的一个法向量为.
因为,
所以 .
所以直线与平面所成角的正弦值为.
【题目】某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).
运行区间 | 成人票价(元/张) | 学生票价(元/张) | ||
出发站 | 终点站 | 一等座 | 二等座 | 二等座 |
南靖 | 厦门 | 26 | 22 | 16 |
若师生均购买二等座票,则共需1020元.
(1)参加活动的教师有人,学生有人;
(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.
①求y关于x的函数关系式;
②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?
【题目】“五一”假期期间,某餐厅对选择、、三种套餐的顾客进行优惠。对选择、套餐的顾客都优惠10元,对选择套餐的顾客优惠20元。根据以往“五一”假期期间100名顾客对选择、、三种套餐的情况得到下表:
选择套餐种类 | |||
选择每种套餐的人数 | 50 | 25 | 25 |
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量表示两位顾客所得优惠金额的综合,求的分布列和期望。