题目内容
【题目】已知函数.
(1)当时,,求的值;
(2)若,求函数的单调递增区间;
(3)若对任意的,恒成立,求实数的取值范围.
【答案】(1) (2) 单调递增区间为和. (3)
【解析】
(1)利用可得方程,解方程求得结果;(2)分类讨论得到分段函数的解析式,在每一段上根据二次函数图象可得函数的单调递增区间,综合所有情况得到结果;(3)当时,可验证不等式成立;当时,将恒成立的不等式转化为,则可知,根据单调性和对号函数求得最值后即可得到结果.
(1),即:,解得:或
(2)由题意得:
当时,在上单调递增;
当时,在上单调递增;
当时,在上单调递增;
综上所述:的单调递增区间为:和
(3)当时,,所以成立
当时,恒成立
即恒成立
实数的取值范围为
练习册系列答案
相关题目