题目内容

已知以原点O为中心,F(,0)为右焦点的双曲线C的离心率
(1)求双曲线C的标准方程及其渐近线方程;
(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与双曲线的两条渐近线分别交于G,H两点,求的值。

解:(1)设C的标准方程为(a,b>0),
则由题意

因此a=2,
C的标准方程为
C的渐近线方程为
即x-2y=0和x+2y=0。

(2)如图,由题意点E(xE,yE)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,
因此有x1xE+4y1yE=4,x2xE+4y2yE=4,
故点M,N均在直线xEx+4yEy=4上,
因此直线MN的方程为xEx+4yEy=4
设G,H分别是直线MN与渐近线x-2y=0及x+2y=0的交点,
由方程组
解得

因为点E在双曲线上,有
所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网