题目内容
【题目】如图,在梯形ABCD中,,,,为梯形外一点,且平面.
(1)求证:平面;
(2)当二面角的平面角的余弦值为时,求这个四棱锥的体积.
【答案】(1)见解析;(2)
【解析】
(1)梯形ABCD中,由线段关系及角度关系可证明.根据平面,可知,由线面垂直判定定理即可证明平面;
(2)在中由余弦定理求得,建立空间直角坐标系,设,写出各个点的坐标,并求得平面BDP的法向量和平面BCP的法向量,根据空间向量的数量积运算及二面角的平面角的余弦值为,即可求得的值,进而求得四棱锥的体积.
(1)证明:在梯形ABCD中,,,
,
.
,
,
,
.
平面ABCD,平面ABCD,
.
又,
平面ACP.
(2)在中,,
.
以点C为坐标原点,分别以CA,CB,CP为x,y,z轴,建立空间直角坐标系.
设,则,,,,,
则,.
设平面BDP的法向量,
则,即.取,得,
平面BCP的一个法向量.
二面角的平面角的余弦值为,,
解得,即,.
【题目】随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢,创新已经成为烘焙作品的衡量标准.某“网红”甜品店生产有几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:
甜品种类 | A甜品 | B甜品 | C甜品 | D甜品 | E甜品 |
销售总额(万元) | 10 | 5 | 20 | 20 | 12 |
销售额(千份) | 5 | 2 | 10 | 5 | 8 |
利润率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 |
(利润率是指:一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值.)
(1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率;
(2)从该甜品店的五种“网红甜品”中随机选取2种不同的甜品,求这两种甜品的单价相同的概率;
(3)假设每类甜品利润率不变,销售一份A甜品获利元,销售一份B甜品获利元,…,销售一份E甜品获利元,依据上表统计数据,随机销售一份甜品获利的期望为,设,试判断与的大小.