题目内容
【题目】已知数列{an}为等差数列,a7﹣a2=10,且a1,a6,a21依次成等比数列.
(1)求数列{an}的通项公式;
(2)设bn,数列{bn}的前n项和为Sn,若Sn,求n的值.
【答案】(1)an=2n+3(2)10
【解析】
(1)设等差数列的公差为d,运用等差数列的通项公式和等比数列中项性质,解方程可得首项和公差,即可得到所求通项公式;
(2)求得bn(),运用裂项相消求和可得Sn,解方程可得n.
解:(1)设数列{an}为公差为d的等差数列,
a7﹣a2=10,即5d=10,即d=2,
a1,a6,a21依次成等比数列,可得
a62=a1a21,即(a1+10)2=a1(a1+40),
解得a1=5,
则an=5+2(n﹣1)=2n+3;
(2)bn(),
即有前n项和为Sn()
(),
由Sn,可得5n=4n+10,
解得n=10.
练习册系列答案
相关题目