题目内容
7.已知数列{an}满足a1=$\frac{5}{2}$且an+1=$\frac{1}{2}$an+1(n∈N*),数列{bn}满足bn=an-2.(1)求证:{bn}是等比数列,并求{an}和{bn}的通项公式;
(2)记cn=(4n+1)•bn,求数列{cn}的前n项和Tn.
分析 (1)通过$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{a}_{n+1}-2}{{a}_{n}-2}$=$\frac{\frac{1}{2}{a}_{n}+1-2}{{a}_{n}-2}$计算即得数列{bn}是首项、公比均为$\frac{1}{2}$的等比数列,进而可得结论;
(2)通过bn=$\frac{1}{{2}^{n}}$可知cn=(4n+1)•$\frac{1}{{2}^{n}}$,利用错位相减法计算即得结论.
解答 (1)证明:∵a1=$\frac{5}{2}$、an+1=$\frac{1}{2}$an+1,
∴bn≠2,
又∵bn=an-2,
∴$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{a}_{n+1}-2}{{a}_{n}-2}$=$\frac{\frac{1}{2}{a}_{n}+1-2}{{a}_{n}-2}$=$\frac{\frac{1}{2}({a}_{n}-2)}{{a}_{n}-2}$=$\frac{1}{2}$,
∵${b}_{1}={a}_{1}-2=\frac{5}{2}-2=\frac{1}{2}$,
∴数列{bn}是首项、公比均为$\frac{1}{2}$的等比数列,
∴bn=$\frac{1}{2}•\frac{1}{{2}^{n-1}}$=$\frac{1}{{2}^{n}}$,
∴an=2+bn=2+$\frac{1}{{2}^{n}}$;
(2)解:∵bn=$\frac{1}{{2}^{n}}$,
∴cn=(4n+1)•bn=(4n+1)•$\frac{1}{{2}^{n}}$,
∴Tn=5•$\frac{1}{2}$+9•$\frac{1}{{2}^{2}}$+13•$\frac{1}{{2}^{3}}$+…+(4n+1)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Tn=5•$\frac{1}{{2}^{2}}$+9•$\frac{1}{{2}^{3}}$+…+(4n-3)•$\frac{1}{{2}^{n}}$+(4n+1)•$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Tn=5•$\frac{1}{2}$+4($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(4n+1)•$\frac{1}{{2}^{n+1}}$
=$\frac{5}{2}$+4•$\frac{\frac{1}{{2}^{2}}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(4n+1)•$\frac{1}{{2}^{n+1}}$
=$\frac{9}{2}$-(4n+9)•$\frac{1}{{2}^{n+1}}$,
∴Tn=9-(4n+9)•$\frac{1}{{2}^{n}}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | (9,17) | B. | (10,18) | C. | (11,19) | D. | (12,20) |
A. | 若b⊥m,c⊥m,则b∥c | B. | m∥a,α⊥β,则m⊥β | C. | 若b⊥α,c∥α,则b⊥c | D. | 若β⊥α,γ⊥β,则γ∥α |
A. | an=2n+1 | B. | an=2n | C. | an=2n-1 | D. | an=2n+3 |