题目内容
【题目】△ABC的三个顶点为A(﹣3,0),B(2,1),C(﹣2,3),求:
(1)BC所在直线的方程;
(2)BC边上中线AD所在直线的方程;
(3)BC边上的垂直平分线DE的方程.
【答案】(1)x+2y﹣4=0.
(2)2x﹣3y+6=0.
(3)y=2x+2.
【解析】
试题(1)利用B和C的坐标直接求出直线方程即可;(2)根据中点坐标公式求出B与C的中点D的坐标,利用A和D的坐标写出中线方程即可;(3)求出直线BC的斜率,然后根据两直线垂直时斜率乘积为﹣1求出BC垂直平分线的斜率,由(2)中D的坐标,写出直线DE的方程即可.
解:(1)因为直线BC经过B(2,1)和C(﹣2,3)两点,由两点式得BC的方程为y﹣1=(x﹣2),即x+2y﹣4=0.
(2)设BC中点D的坐标为(x,y),则x==0,y==2.
BC边的中线AD过点A(﹣3,0),D(0,2)两点,由截距式得AD所在直线方程为+=1,即2x﹣3y+6=0.
(3)BC的斜率k1=﹣,则BC的垂直平分线DE的斜率k2=2,由斜截式得直线DE的方程为y=2x+2.
练习册系列答案
相关题目