题目内容

(09年莱西一中模拟文)(12分)

设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)设点为直线上的动点,过点作曲线的切线为切点),

证明:直线 必过定点并指出定点坐标.

解析:(Ⅰ)过点垂直直线于点

依题意得:

所以动点的轨迹为是以为焦点,直线为准线的抛物线, 

即曲线的方程是                      ---------------------4分

(Ⅱ)解法一:设,则

知,, ∴

又∵切线AQ的方程为:,注意到

切线AQ的方程可化为:

在切线AQ上, ∴ 

所以点在直线上;

同理,由切线BQ的方程可得:.

所以点在直线上;

可知,直线AB的方程为:

即直线AB的方程为:

∴直线AB必过定点.     ------------------------12分

 

(Ⅱ)解法二:设,切点的坐标为,则

知,,得切线方程:.

即为:,又∵在切线上,

所以可得:,解之得:.

所以切点

.……………………………12分

故直线AB的方程为:

化简得:

即直线AB的方程为:

∴直线AB必过定点.………………………………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网