题目内容
【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).
(1)求;
(2)若,求面积的最大值.
【答案】(1);(2).
【解析】
(1)对于所选的条件,先根据正弦定理将边化成角,结合三角恒等变换,即可计算,再根据角的范围,即可求解;
(2)根据余弦定理,可得:,利用基本不等式,导出,结合三角形面积公式,即可求解.
(1)选①,
由正弦定理可得:,
即,∴,
∵,∴,∴,即,
又,∴,
选②,
由正弦定理可得:,
∴,
∵,∴,∴,
又,∴;
(2)由余弦定理得:,
又,当且仅当“”时取“=”,
∴,即,∴,
∴,
∴的面积的最大值为.
练习册系列答案
相关题目
【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)现随机抽取1名顾客,试估计该顾客年龄在[30,50)且未使用自由购的概率;
(2)从被抽取的年龄在[50,70]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[50,60)的概率;
(3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?