题目内容
【题目】已知不等式对一切都成立,则的最小值是( )
A. B. C. D. 1
【答案】C
【解析】令,则
若a≤0,则y′>0恒成立,x>﹣1时函数递增,无最值.
若a>0,由y′=0得:x=,
当﹣1<x<时,y′>0,函数递增;
当x>时,y′<0,函数递减.
则x=处取得极大值,也为最大值﹣lna+a﹣b﹣2,
∴﹣lna+a﹣b﹣2≤0,
∴b≥﹣lna+a﹣2,
∴≥1﹣﹣,
令t=1﹣﹣,
∴t′=,
∴(0,e﹣1)上,t′<0,(e﹣1,+∞)上,t′>0,
∴a=e﹣1,tmin=1﹣e.
∴的最小值为1﹣e.
点晴:本题主要考查用导数研究不等式恒成立问题. 解决这类问题的一种方法法是:通过变量分离将含参函数的问题转化为不含参的确定函数的最值问题,本题中a≤0时,则y′>0恒成立,x>﹣1时函数递增,无最值.a>0时x=处取得极大值,也为最大值﹣lna+a﹣b﹣2≤0,可得b≥﹣lna+a﹣2,于是≥1﹣﹣,令t=1﹣﹣,然后利用导数研究这个函数的单调性、极值和最值,可得的最小值.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )