题目内容
在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是
- A.BC∥平面PDF
- B.DF⊥平面PAE
- C.平面PDF⊥平面ABC
- D.平面PAE⊥平面ABC
C
分析:正四面体P-ABC即正三棱锥P-ABC,所以其四个面都是正三角形,在正三角形中,联系选项B、C、D中有证明到垂直关系,应该联想到“三线合一”.D,E,F分别是AB,BC,CA的中点,由中位线定理可得BC∥DF,所以BC∥平面PDF,进而可得答案.
解答:由DF∥BC可得BC∥平面PDF,故A正确.
若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE
故DF⊥平面PAE,故B正确.
由DF⊥平面PAE可得,平面PAE⊥平面ABC,故D正确.
故选C.
点评:本小题考查空间中的线面关系,正三角形中“三线合一”,中位线定理等基础知识,考查空间想象能力和思维能力.
分析:正四面体P-ABC即正三棱锥P-ABC,所以其四个面都是正三角形,在正三角形中,联系选项B、C、D中有证明到垂直关系,应该联想到“三线合一”.D,E,F分别是AB,BC,CA的中点,由中位线定理可得BC∥DF,所以BC∥平面PDF,进而可得答案.
解答:由DF∥BC可得BC∥平面PDF,故A正确.
若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE
故DF⊥平面PAE,故B正确.
由DF⊥平面PAE可得,平面PAE⊥平面ABC,故D正确.
故选C.
点评:本小题考查空间中的线面关系,正三角形中“三线合一”,中位线定理等基础知识,考查空间想象能力和思维能力.
练习册系列答案
相关题目