题目内容
设平面向量
=(cosx,sinx),
=(
,
),函数f(x)=
•
+1.
①求函数f(x)的值域;
②求函数f(x)的单调增区间.
③当f(α)=
,且
<α<
时,求sin(2α+
)的值.
a |
b |
| ||
2 |
1 |
2 |
a |
b |
①求函数f(x)的值域;
②求函数f(x)的单调增区间.
③当f(α)=
9 |
5 |
π |
6 |
2π |
3 |
2π |
3 |
依题意f(x)=(cosx,sinx)•(
,
)+1=
cosx+
sinx+1(2分)
=sin(x+
)+1(5分)
①函数f(x)的值域是[0,2];(6分)
②令-
+2kπ≤x+
≤
+2kπ,
解得:-
+2kπ≤x≤
+2kπ,
所以函数f(x)的单调增区间为[-
+2kπ,
+2kπ](k∈Z);(8分)
③由f(α)=sin(α+
)+1=
,得sin(α+
)=
,
因为
<α<
,所以
<α+
<π,
得cos(α+
)=-
,(11分)
则sin(2α+
)=sin2(α+
)
=2sin(α+
)cos(α+
)=-2×
×
=-
(13分).
| ||
2 |
1 |
2 |
| ||
2 |
1 |
2 |
=sin(x+
π |
3 |
①函数f(x)的值域是[0,2];(6分)
②令-
π |
2 |
π |
3 |
π |
2 |
解得:-
5π |
6 |
π |
6 |
所以函数f(x)的单调增区间为[-
5π |
6 |
π |
6 |
③由f(α)=sin(α+
π |
3 |
9 |
5 |
π |
3 |
4 |
5 |
因为
π |
6 |
2π |
3 |
π |
2 |
π |
3 |
得cos(α+
π |
3 |
3 |
5 |
则sin(2α+
2π |
3 |
π |
3 |
=2sin(α+
π |
3 |
π |
3 |
4 |
5 |
3 |
5 |
24 |
25 |
练习册系列答案
相关题目