题目内容
【题目】(本小题满分12分)
已知=12sin(x+)cosx-3,x∈[o,].
(1)求的最大值、最小值;
(Ⅱ)CD为△ABC的内角平分线,已知AC=max,BC=,CD=2,求∠C.
【答案】( Ⅰ) max =6 , min =3.
( Ⅱ ) C=.
【解析】分析:第一问先对函数解析式进行化简,首先应用正弦的和角公式拆,之后应用正余弦的倍角公式降次升角,之后应用辅助角公式化简,之后将整体角的取值范围求出,再判断其最值,第二问先将第一问求的结果代入,之后借助于正余弦定理找出对应的量,求得结果.
详解:( Ⅰ ) =6sin ( 2 x + )
∵ 在( 0 ,)上单调递增,( )上单调递减
∴ max =6 , min =3
( Ⅱ )在 ΔADC 中,=,在 ΔBDC中,=
∵sin∠ADC=sin∠ BDC , AC=6 , BC =3
∴ AD=2BD 在ΔBCD中, BD2 =17-12cos,
在ΔACD中, AD2=44-24cos=68-48cos
∴cos=,即 C=( Ⅰ) max =6 , min =3.
( Ⅱ ) C=.
【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组 | |||||
企业数 | 2 | 24 | 53 | 14 | 7 |
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:.
【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.