题目内容
【题目】已知函数f(x)=(x﹣2)ex﹣ +kx(k是常数,e是自然对数的底数,e=2.71828…)在区间(0,2)内存在两个极值点,则实数k的取值范围是 .
【答案】(1,e)∪(e,e2)
【解析】解:f′(x)=(x﹣1)ex﹣k(x﹣1)=(x﹣1)(ex﹣k), 若f(x)在(0,2)内存在两个极值点,
则f′(x)=0在(0,2)有2个解,
令f′(x)=0,解得:x=1或k=ex ,
而y=ex(0<x<2)的值域是(1,e2),
故k∈(1,e)∪(e,e2),
所以答案是:(1,e)∪(e,e2).
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.
练习册系列答案
相关题目