题目内容

已知关于的函数,其导函数为.记函数 在区间上的最大值为
(1) 如果函数处有极值,试确定的值;
(2) 若,证明对任意的,都有
(3) 若对任意的恒成立,试求的最大值.

(1);(2)证明详见解析;(3).

解析试题分析:本题主要考查导数的运算、利用导数求函数的极值和最值等基础知识,考查学生的转化能力、分析问题解决问题的能力、计算能力.第一问,先对求导,由于在x=1处有极值,则,列出方程组,解出b和c的值,由于得到了两组值,则需要验证看是否符合已知条件,若不符合需舍掉;第二问,可以利用二次函数图象和性质直接证明,也可以利用反证法证明出矛盾,从而得到正确结论;第三问,结合第二问的结论,可以直接得到时的情况,当时需分三种情况讨论,最后综合所有情况再得出结论.
试题解析:(1) ∵,由处有极值,可得
,解得,           2分
,则,此时函数没有极值; 3分
,则,此时当变化时,的变化情况如下表:













练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网