ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªº¯Êýf£¨x£©=2cos£¨¦Øx+$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©Âú×㣺f£¨$\frac{8}{3}$¦Ð£©=f£¨$\frac{14}{3}$¦Ð£©£¬ÇÒÔÚÇø¼ä£¨$\frac{8}{3}$¦Ð£¬$\frac{14}{3}$¦Ð£©ÄÚÓÐ×î´óÖµµ«Ã»ÓÐ×îСֵ£¬¸ø³öÏÂÁÐËĸöÃüÌ⣺P1£ºf£¨x£©ÔÚ[0£¬2¦Ð]Éϵ¥µ÷µÝ¼õ£»
P2£ºf£¨x£©µÄ×îСÕýÖÜÆÚÊÇ4¦Ð£»
P3£ºf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{2}$¶Ô³Æ£»
P4£ºf£¨x£©µÄͼÏó¹ØÓڵ㣨-$\frac{4}{3}$¦Ð£¬0£©¶Ô³Æ£®ÆäÖеÄÕæÃüÌâÊÇ£¨¡¡¡¡£©
A£® | P1£¬P2 | B£® | P2£¬P4 | C£® | P1£¬P3 | D£® | P3£¬P4 |
·ÖÎö ¸ù¾Ýf£¨$\frac{8}{3}$¦Ð£©=f£¨$\frac{14}{3}$¦Ð£©£¬¿ÉµÃf£¨x£©µÄͼÏóµÄÒ»Ìõ¶Ô³ÆÖá·½³ÌΪ x=$\frac{11¦Ð}{3}$£®ÔÙ¸ù¾Ýº¯ÊýÔÚÇø¼ä£¨$\frac{8}{3}$¦Ð£¬$\frac{14}{3}$¦Ð£©ÄÚÓÐ×î´óÖµµ«Ã»ÓÐ×îСֵ£¬ÇóµÃ¦Ø=$\frac{1}{2}$£¬f£¨x£©=2cos£¨$\frac{1}{2}$x+$\frac{¦Ð}{6}$£©£®ÔÙÀûÓÃÓàÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÓàÏÒº¯ÊýµÄÖµÓòºÍµ¥µ÷ÐÔ£¬Åжϸ÷¸öÃüÌâÊÇ·ñÕýÈ·£¬´Ó¶øµÃ³ö½áÂÛ£®
½â´ð ½â£ºÓɺ¯Êýf£¨x£©=2cos£¨¦Øx+$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©Âú×㣺f£¨$\frac{8}{3}$¦Ð£©=f£¨$\frac{14}{3}$¦Ð£©£¬
¿ÉµÃº¯Êýf£¨x£©µÄͼÏóµÄÒ»Ìõ¶Ô³ÆÖá·½³ÌΪ x=$\frac{11¦Ð}{3}$£®
ÔÙ¸ù¾Ýº¯ÊýÔÚÇø¼ä£¨$\frac{8}{3}$¦Ð£¬$\frac{14}{3}$¦Ð£©ÄÚÓÐ×î´óÖµµ«Ã»ÓÐ×îСֵ£¬
¿ÉµÃ¦Ø¡Á$\frac{11¦Ð}{3}$+$\frac{¦Ð}{6}$=2k¦Ð£¬k¡ÊZ£¬ÇÒ$\frac{14¦Ð}{3}$-$\frac{8¦Ð}{3}$£¼$\frac{2¦Ð}{¦Ø}$£¬
¼´¦Ø=$\frac{6k-\frac{1}{2}}{11}$ ÇÒ0£¼¦Ø£¼1£¬¡à¦Ø=$\frac{1}{2}$£¬f£¨x£©=2cos£¨$\frac{1}{2}$x+$\frac{¦Ð}{6}$£©£®
¶ÔÓÚP1£¬ÔÚ[0£¬2¦Ð]ÉÏ£¬$\frac{1}{2}$x+$\frac{¦Ð}{6}$¡Ê[$\frac{¦Ð}{6}$£¬$\frac{7¦Ð}{6}$]£¬f£¨x£©ÔÚ[0£¬2¦Ð]Éϲ»µ¥µ÷£¬¹ÊP1²»ÕýÈ·£»
¶ÔÓÚP2£¬f£¨x£©µÄ×îСÕýÖÜÆÚÊÇ$\frac{2¦Ð}{\frac{1}{2}}$=4¦Ð£¬¹ÊP2ÕýÈ·£»
¶ÔÓÚP3£¬µ±x=$\frac{¦Ð}{2}$ʱ£¬f£¨x£©=cos$\frac{5¦Ð}{12}$£¬²»ÊÇ×îÖµ£¬¹Êf£¨x£©µÄͼÏó²»¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{2}$¶Ô³Æ£¬¹ÊP3²»ÕýÈ·£»
¶ÔÓÚP4£¬µ±x=-$\frac{4¦Ð}{3}$ʱ£¬f£¨x£©=cos£¨-$\frac{¦Ð}{2}$£©=0£¬¹Êf£¨x£©µÄͼÏó¹ØÓڵ㣨-$\frac{4}{3}$¦Ð£¬0£©¶Ô³Æ£»¹ÊP4ÕýÈ·£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÓàÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÓàÏÒº¯ÊýµÄÖµÓòºÍµ¥µ÷ÐÔ£¬ÊôÓÚÖеµÌ⣮