题目内容
(本小题满分14分)对定义域分别是、的函数、,
规定:函数
已知函数,.
(1)求函数的解析式;
⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
规定:函数
已知函数,.
(1)求函数的解析式;
⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
(1)⑵当时,函数没有最小值;当时,函数的最小值为;当时,函数的最小值为
试题分析:(1)因为函数的定义域,函数的定义域,所以 ………………4分
(2)当时,函数单调递减,
所以函数在上的最小值为.当时,.
若,函数.此时,函数存在最小值h(0)=0.
若,因为,
所以函数在上单调递增.此时,函数不存在最小值.
若,因为,
所以函数在上单调递减,在上单调递增.此时,函数的最小值为.
因为,
所以当时,,当时,.
综上可知,当时,函数没有最小值;当时,函数的最小值为;当时,函数的最小值为.…………………14分
点评:本题第一小题考查的是分段函数,分段函数针对于不同的自变量的范围有不同的解析式,第二小题难在需要对a分情况讨论从而确定函数单调性求解其最值,学生不易找到分情况讨论的入手点,本题难度大
练习册系列答案
相关题目