题目内容
【题目】如图,在平面直角系中,点A为曲线C:在第一象限的图象上的动点,点E,G在曲线C的准线上,且点G在x轴的下方,圆O与准线相切,直线交曲线C于点B,交圆O于点D,H.
(1)当点H为曲线C的焦点,时,求;
(2)当点O为的内心时,若,求点A的坐标.
【答案】(1)8;(2).
【解析】
(1)首先由准线方程可得抛物线方程,根据圆的弦长可得直线AG的方程,联立直线AG与抛物线,结合焦半径公式即可求解;(2)根据直线AE,AG与圆相切,结合圆心到直线的距离等于半径,构造二次方程的两根为,结合韦达定理即可建立等量关系,可求出点A的坐标.
(1)∵曲线C的准线为,∴,即,
∴曲线C的方程为.
∴此时,即.
过点O作于点K,则点K为弦的中点.
∵,∴.
在中,,
∴,即直线的斜率为1,
∴直线的方程为.
设点,.
联立消去y,
得,
由韦达定理得,
∴.
(2)当点O为的内心时,点D与点H重合,即直线与圆O相切.
设,,,易知,,.
直线的方程为,
化简得.
又圆心到的距离为1,
即,
∴,
化简得,
同理有.
∴,,∵,
∴.
∴,解得或(舍),∴.
【题目】某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.
表中,
(1)根据散点图判断:与哪一个模型更适合作为该图书每册的成本费y与印刷数量x的回归方程?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(结果精确到0.01);
(3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)
附:对于一组数据(ω1,v1),(ω2,v2),…,(ωn,vn),其回归直线的斜率和截距的最小二乘估计分别为,.
【题目】2020年春节期间,全国人民都在抗击“新型冠状病毒肺炎”的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用A、B两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:
所用的时间(单位:小时) | ||||
路线1的频数 | 200 | 400 | 200 | 200 |
路线2的频数 | 100 | 400 | 400 | 100 |
假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.
(1)汽车A和汽车B应如何选择各自的路线.
(2)若路线1、路线2的“一次性费用”分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):
到达时间与约定时间的差x(单位:小时) | |||
该车得分 | 0 | 1 | 2 |
生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车A、B用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)