题目内容
7.求函数y=3x2+2x+1x2+x+13x2+2x+1x2+x+1,x∈(0,+∞)的值域.分析 利用分离常数法得y=3x2+2x+1x2+x+13x2+2x+1x2+x+1=3-x+2x2+x+1x+2x2+x+1,再利用换元法令x+2=t,从而求函数的值域.
解答 解:y=3x2+2x+1x2+x+13x2+2x+1x2+x+1=3-x+2x2+x+1x+2x2+x+1,
令x+2=t,
∵x≥0,∴t≥2,
∴x=t-2,
y=3-t(t−2)2+(t−2)+1t(t−2)2+(t−2)+1
=3-tt2−3t+3tt2−3t+3
=3-1t+3t−31t+3t−3,
∵t+3t3t在[2,+∞)上单调递增,
∴t+3t3t-3≥1212,
∴0<1t+3t−31t+3t−3≤2,
故y∈[1,3).
故函数y=3x2+2x+1x2+x+13x2+2x+1x2+x+1,x∈(0,+∞)的值域为[1,3).
点评 本题考查了函数的值域的求法,利用了分离常数法与换元法等,属于中档题.
A. | f(sinA)>f(cosB) | B. | f(sinA)<f(cosB) | C. | f(sinA)>f(sinB) | D. | f(cosA)>f(cosB) |
A. | {1,3,4}为“权集” | B. | {1,2,3,6}为“权集” | ||
C. | “权集”中元素可以有0 | D. | “权集”中一定有元素1 |
A. | f(x1)−f(x2)x1−x2>0f(x1)−f(x2)x1−x2>0 | B. | (x1-x2)[f(x1)-f(x2)]>0 | ||
C. | f(a)<f(x1)<f(x2)<f(b) | D. | x1−x2f(x1)−f(x2)>0x1−x2f(x1)−f(x2)>0 |
A. | 40 | B. | 200 | C. | 400 | D. | 20 |