题目内容
已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示数列{an}的前n项和,则使得Sn达到最大值的n是( )
A.21 | B.20 | C.19 | D.18 |
B
解:设{an}的公差为d,由题意得
a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①
a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②
由①②联立得a1=39,d=-2,
∴sn="39n+n(n-1)" 2 ×(-2)=-n2+40n=-(n-20)2+400,
故当n=20时,Sn达到最大值400.
故选B.
a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①
a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②
由①②联立得a1=39,d=-2,
∴sn="39n+n(n-1)" 2 ×(-2)=-n2+40n=-(n-20)2+400,
故当n=20时,Sn达到最大值400.
故选B.
练习册系列答案
相关题目