题目内容
底面是矩形的四棱柱ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=90°,∠BAA′=∠DAA′=60°,则AC′=( )A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_ST/0.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_ST/1.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_ST/2.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_ST/3.png)
【答案】分析:连接AC,根据cos∠A'AB=cos∠A'AC•cos∠CAB求出∠A'AC,根据互补性可知∠C'CA的大小,最后根据余弦定理得求出AC′即可.
解答:
解:连接AC,∵AB=4,AD=3,∠BAD=90°
∴AC=5
根据cos∠A'AB=cos∠A'AC•cos∠CAB
即
=cos∠A'AC•![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_DA/1.png)
∴∠A'AC=45°则∠C'CA=135°
而AC=5,AA′=5,
根据余弦定理得AC′=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_DA/2.png)
故选:C
点评:本题主要考查了体对角线的求解,以及余弦定理的应用,同时考查了空间想象能力,计算推理的能力,属于中档题.
解答:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_DA/images0.png)
∴AC=5
根据cos∠A'AB=cos∠A'AC•cos∠CAB
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_DA/1.png)
∴∠A'AC=45°则∠C'CA=135°
而AC=5,AA′=5,
根据余弦定理得AC′=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214248552791189/SYS201310232142485527911006_DA/2.png)
故选:C
点评:本题主要考查了体对角线的求解,以及余弦定理的应用,同时考查了空间想象能力,计算推理的能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目