题目内容

底面是矩形的四棱柱ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=90°,∠BAA′=∠DAA′=60°,则AC′=(  )
A、
95
B、
59
C、
85
D、
58
分析:由空间向量的向量基本定理得,
AC′
=
AB
+
BC
+
CC′
,两边平方,运用向量的数量积知识,即可求得.
解答:精英家教网解:∵
AC′
=
AB
+
BC
+
CC′

AC′
2
=(
AB
+
BC
+
CC′
)2
=|
AB
|2+|
BC
|2+|
CC′
|2
+2
AB
BC
+2
AB
CC′
+2
BC
CC′

=16+9+25+0+2×4×5×
1
2
+2×3×5×
1
2
=85,
∴AC′=
85

故选:C
点评:本题主要考查了体对角线的求解,以及余弦定理的应用,同时考查了空间想象能力,计算推理的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网