题目内容
【题目】如图,旅客从某旅游区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50米/分钟,在甲出发2分钟后,乙从A乘缆车到B,再从B匀速步行到C.假设缆车匀速直线运动的速度为130米/分钟,山路AC长1260米,经测量,cosA= ,cosC= .
(1)求索道AB的长;
(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?
【答案】
(1)解:∵在 ,
∴ ,
∴ ,
∴由正弦定理 ,
∴索道AB的长为1040m
(2)解:假设乙出发t分钟后,甲、乙两游客距离为d,
此时,甲行走了(100+50t)m,乙距离A处130t m,
所以由余弦定理得:
d2=(130t)2+2500(t+2)2﹣2130t50(t+2)
=200(37t2﹣70t+50)
= ,
故
【解析】(1)根据正弦定理即可确定出AB的长;(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理即可得解.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;.
练习册系列答案
相关题目