题目内容
【题目】已知数列,,数列满足,n.
(1)若,,求数列的前2n项和;
(2)若数列为等差数列,且对任意n,恒成立.
①当数列为等差数列时,求证:数列,的公差相等;
②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.
【答案】(1)(2)①见解析②数列不能为等比数列,见解析
【解析】
(1)根据数列通项公式的特点,奇数项为等差数列,偶数项为等比数列,选用分组求和的方法进行求解;
(2)①设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;
②利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列.
(1)因为,,所以,且,
由题意可知,数列是以1为首项,2为公差的等差数列,
数列是首项和公比均为4的等比数列,
所以;
(2)①证明:设数列的公差为,数列的公差为,
当n为奇数时,,
若,则当时,,
即,与题意不符,所以,
当n为偶数时,,,
若,则当时,,
即,与题意不符,所以,
综上,,原命题得证;
②假设可以为等比数列,设公比为q,
因为,所以,所以,,
因为当时,
,
所以当n为偶数,且时,,
即当n为偶数,且时,不成立,与题意矛盾,
所以数列不能为等比数列.
练习册系列答案
相关题目