题目内容
【题目】在平面直角坐标系中,过点作倾斜角为的直线,以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,将曲线上各点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线,直线与曲线交于不同的两点.
(1)求直线的参数方程和曲线的普通方程;
(2)求的值.
【答案】(1)直线的参数方程为,曲线的普通方程为;(2)
【解析】
(1)根据直线参数方程的知识求得直线的参数方程,将的极坐标方程转化为直角坐标方程,然后通过图像变换的知识求得的普通方程.
(2)将直线的参数方程代入曲线的普通方程,化简后写出韦达定理,根据直线参数的几何意义,求得的值.
直线的参数方程为,
由两边平方得,所以曲线的直角坐标方程式,
曲线的方程为,即.
(2)直线的参数方程为,代入曲线的方程得:
设对应得参数分别为,则
练习册系列答案
相关题目
【题目】“微信运动”已成为当下热门的健身方式,小明的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | ||
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)若采用样本估计总体的方式,试估计小明的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步时被系统评定为“积极型”,否则为“懈怠型”.根据小明的统计完成下面的列联表,并据此判断是否有以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |