ÌâÄ¿ÄÚÈÝ
ÏÂÁÐÃüÌ⣺
¢Ùº¯Êýy=
µÄµ¥µ÷Çø¼äÊÇ£¨-¡Þ£¬-1£©¡È£¨-1£¬+¡Þ£©£®
¢Úº¯Êýf£¨x£©=|x|•£¨|x|+|2-x|£©-1ÓÐ2¸öÁãµã£®
¢ÛÒÑÖªº¯Êýf£¨x£©=ex-mx+1µÄͼÏóΪÇúÏßC£¬ÈôÇúÏßC´æÔÚÓëÖ±Ïßy=
x´¹Ö±µÄÇÐÏߣ¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇm£¾2£®
¢ÜÈôº¯Êýf£¨x£©=
¶ÔÈÎÒâµÄx1¡Ùx2¶¼ÓÐ
£¼0£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-
£¬1]£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
¢Ùº¯Êýy=
x-1 |
x+1 |
¢Úº¯Êýf£¨x£©=|x|•£¨|x|+|2-x|£©-1ÓÐ2¸öÁãµã£®
¢ÛÒÑÖªº¯Êýf£¨x£©=ex-mx+1µÄͼÏóΪÇúÏßC£¬ÈôÇúÏßC´æÔÚÓëÖ±Ïßy=
1 |
2 |
¢ÜÈôº¯Êýf£¨x£©=
|
f(x2)-f(x1) |
x2-x1 |
1 |
7 |
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
¢Ú¢Û
¢Ú¢Û
£®·ÖÎö£º¢Ùº¯Êýy=
£¨x¡Ù-1£©£¬Ö»ÌÖÂÛÔÚ£¨-¡Þ£¬-1£©ºÍ£¨-1£¬+¡Þ£©µÄµ¥µ÷ÐÔ£»
¢ÚÈ¥µôf£¨x£©Öеľø¶ÔÖµ£¬ÔÚÿһ¸öÇø¼äÉÏÌÖÂÛf£¨x£©µÄÁãµãÇé¿ö£»
¢ÛÇó³öÇúÏßC£ºf£¨x£©µÄµ¼Êý£¬¼´CµÄÇÐÏßбÂÊ£¬ÒòÓëÖ±Ïßy=
x´¹Ö±£¬¿ÉµÃmµÄÈ¡Öµ·¶Î§£»
¢ÜÓÉÃüÌâÖªf£¨x£©ÊǼõº¯Êý£¬´Ó¶øÌÖÂÛaµÄÈ¡Öµ¼´¿É£®
x-1 |
x+1 |
¢ÚÈ¥µôf£¨x£©Öеľø¶ÔÖµ£¬ÔÚÿһ¸öÇø¼äÉÏÌÖÂÛf£¨x£©µÄÁãµãÇé¿ö£»
¢ÛÇó³öÇúÏßC£ºf£¨x£©µÄµ¼Êý£¬¼´CµÄÇÐÏßбÂÊ£¬ÒòÓëÖ±Ïßy=
1 |
2 |
¢ÜÓÉÃüÌâÖªf£¨x£©ÊǼõº¯Êý£¬´Ó¶øÌÖÂÛaµÄÈ¡Öµ¼´¿É£®
½â´ð£º½â£º¢Ù¡ßº¯Êýy=
=1-
ÔÚÇø¼ä£¨-¡Þ£¬-1£©ºÍ£¨-1£¬+¡Þ£©¶¼ÊÇÔöº¯Êý£¬µ«ÔÚ£¨-¡Þ£¬-1£©¡È£¨-1£¬+¡Þ£©Éϲ»ÊÇÔöº¯Êý£¬¡àÃüÌâ¢Ù´íÎó£»
¢Ú¡ßf£¨x£©=|x|•£¨|x|+|2-x|£©-1=
£¬¡àµ±x¡Ý2ʱ£¬f£¨x£©ÎÞÁãµã£¬µ±0£¼x£¼2ʱ£¬f£¨x£©ÓÐ1¸öÁãµã£¬µ±x¡Ü0ʱ£¬f£¨x£©ÓÐ1¸öÁãµã£¬¡àÃüÌâ¢ÚÕýÈ·£»
¢Û¡ßÇúÏßCµÄ·½³Ì£ºf£¨x£©=ex-mx+1£¬¡àf£¬£¨x£©=ex-m£¬ÓÉÇúÏßCµÄÇÐÏßÓëÖ±Ïßy=
x´¹Ö±£¬µÃ£¨ex-m£©•
=-1£¬¡àm=ex+2£¾2£¬¡àÃüÌâ¢ÛÕýÈ·£»
¢Ü¡ßf£¨x£©=
£¬¶ÔÈÎÒâµÄx1¡Ùx2¶¼ÓÐ
£¼0£¬¡àf£¨x£©ÊǼõº¯Êý£¬¼´µ±x£¼1ʱ£¬ÓÐ3a-1£¼0£¬¡àa£¼
£¬µ±x¡Ý1ʱ£¬0£¼a£¼1£»¡àÃüÌâ¢Ü´íÎó£®
×ÛÉÏÕýÈ·ÃüÌâµÄÐòºÅΪ¢Ú¢Û£®
¹Ê´ð°¸Îª£º¢Ú¢Û£®
x-1 |
x+1 |
2 |
x+1 |
¢Ú¡ßf£¨x£©=|x|•£¨|x|+|2-x|£©-1=
|
¢Û¡ßÇúÏßCµÄ·½³Ì£ºf£¨x£©=ex-mx+1£¬¡àf£¬£¨x£©=ex-m£¬ÓÉÇúÏßCµÄÇÐÏßÓëÖ±Ïßy=
1 |
2 |
1 |
2 |
¢Ü¡ßf£¨x£©=
|
f(x2)-f(x1) |
x2-x1 |
1 |
3 |
×ÛÉÏÕýÈ·ÃüÌâµÄÐòºÅΪ¢Ú¢Û£®
¹Ê´ð°¸Îª£º¢Ú¢Û£®
µãÆÀ£º±¾Ìâͨ¹ýÃüÌâÕæ¼ÙµÄÅж¨£¬¿¼²éÁ˺¯ÊýÓëµ¼Êý֪ʶµÄ×ÛºÏÓ¦Óã¬ÊÇÈÝÒ׳ö´íµÄÌâÄ¿
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿