题目内容
已知点A(1,0),B(2,0).若动点M满足
•
+
|
|=0,则点M的轨迹方程为______.
AB |
BM |
2 |
AM |
设M的坐标为(x,y),可得
=(x-1,y),
=(1,0),
=(x-2,y)
∴
•
=1×(x-2)+0×y=x-2,
=
∵动点M满足
•
+
|
|=0,
∴(x-2)+
•
=0
移项,平方得(x-2)2=2[(x-1)2+y2]
整理,得x2+2y2=2,
所以点M的轨迹方程为:
+y2=1.
故答案为:
+y2=1
AM |
AB |
BM |
∴
AB |
BM |
|AM| |
(x-1)2+y2 |
∵动点M满足
AB |
BM |
2 |
AM |
∴(x-2)+
2 |
(x-1)2+y2 |
移项,平方得(x-2)2=2[(x-1)2+y2]
整理,得x2+2y2=2,
所以点M的轨迹方程为:
x2 |
2 |
故答案为:
x2 |
2 |
练习册系列答案
相关题目