题目内容
4.算式(2$\frac{1}{4}$)0.5+0.1-2-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$-($\frac{1}{2}$)-3+($\sqrt{3}$-1)0=94.分析 (2$\frac{1}{4}$)0.5+0.1-2-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$-($\frac{1}{2}$)-3+($\sqrt{3}$-1)0=$(\frac{9}{4})^{0.5}$+$\frac{1}{0.{1}^{2}}$-$(\sqrt{2})^{3×(-\frac{2}{3})}$-23+1.
解答 解:(2$\frac{1}{4}$)0.5+0.1-2-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$-($\frac{1}{2}$)-3+($\sqrt{3}$-1)0
=$(\frac{9}{4})^{0.5}$+$\frac{1}{0.{1}^{2}}$-$(\sqrt{2})^{3×(-\frac{2}{3})}$-23+1
=$\frac{3}{2}$+100-$\frac{1}{2}$-8+1
=94;
故答案为:94.
点评 本题考查了有理指数幂的化简与求值,属于基础题.
练习册系列答案
相关题目
8.若集合A={x∈Z|$\frac{x+3}{x-2}$≤0},B={x∈R|x2≥-2x},则A∩B=( )
A. | {-3,-2,0,1} | B. | {-3,-2,0,1,2} | C. | [-3,-2]∪[0,2) | D. | [-3,-2]∪[0,2] |