题目内容
(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnx,g(x)=ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.
解:(1)f′(1)=2,且P(1,0),∴f(x)在P点处的切线方程为y=2(x-1),
即2x-y-2=0…………………………………………………………………………(2分)
又g′(1)=a+3,∴a=-1.…………………………………………………………(3分)
故g(x)=-x2+3x,则方程
f(x2+1)+g(x)=3x+k可化为
ln(x2+1)-x2=k.令y1=ln(x2+1)-
x2,则
=
-x=-
令=0得x=-1,0,1.因此
及y的变化情况如下表:
x |
(-∞,-1) |
-1 |
(-1,0) |
0 |
(0,1) |
1 |
(1,+∞) |
|
+ |
0 |
- |
0 |
+ |
0 |
- |
y |
|
极大值 |
|
极小值 |
|
极大值 |
|
且(y1)极大值=ln2-,(y1)极小值=0.……………………………………………………(6分)
又∵方程有四个不同实数根,函数y=ln(x2+1)-x2为偶函数,且当x2+1=e3(x=
>1)时,ln(x2+1)-
x2=3-
(e3-1)=
-
e3<0=(y1)极小值,所以0<k<ln2-
.……………………………………………………………………………………………(8分)
(2)∵F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.
∴F(x)=(a-3)x2-(a+3)x-1.………………………………………………………(9分)
①当a=3时,F(x)=-6x-1在(0,1]上是减函数,可知F(x)取不到最大值.
②当a<3时,F(x)的对称轴为x=,若x∈(0,1]时,F(x)取得最大值.则
>0解得a<-3或a>3,从而a<-3.
③当a>3时,若x∈(0,1]时,F(x)取得最大值,则<
时,此时a∈
.
综上所述,存在实数a∈(-∞,-3),使得当x∈(0,1]时,F(x)取得最大值.……(13分)
【解析】略
![](http://thumb.zyjl.cn/images/loading.gif)