题目内容
等比数列{an}的各项均为正数,且2a1+3a2=1,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_ST/0.png)
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn;
(3)设bn=log3a1+log3a2+…+log3an,记数列
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_ST/2.png)
【答案】分析:(1)设等比数列{an}的公比为q,依题意,列出关于首项a1与公比q的方程组,解之即可求得数列{an}的通项公式;
(2)按照比数列{an}的前n项和公式求之即可;
(3)求得数列{
}的前n项和为Tn,对于?n∈N*,恒有
成立,其中m∈N*,即可求得m的最小值.
解答:解:(1)设等比数列{an}的公比为q,则
,解得a1=
,q=
,
∴an=
;
(2)∴数列{an}的前n项和Sn=
=
(1-
);
(3)∵bn=log3a1+log3a2+…+log3an=-1-2-…-n=-
,
∴
=-
=-2(
-
),
∴Tn=-2[(1-
)+(
-
)+…+(
-
)]
=-2(1-
)=-
.
∵Tn>
恒成立,
即-
>
恒成立,又m∈N*,
∴m>2011-
恒成立,
∴mmin=2011.
点评:本题考查数列的求和,考查等比数列的通项公式与求和公式的综合应用,属于中档题.
(2)按照比数列{an}的前n项和公式求之即可;
(3)求得数列{
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/1.png)
解答:解:(1)设等比数列{an}的公比为q,则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/4.png)
∴an=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/5.png)
(2)∴数列{an}的前n项和Sn=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/8.png)
(3)∵bn=log3a1+log3a2+…+log3an=-1-2-…-n=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/9.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/13.png)
∴Tn=-2[(1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/18.png)
=-2(1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/20.png)
∵Tn>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/21.png)
即-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/23.png)
∴m>2011-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173820401120533/SYS201311031738204011205020_DA/24.png)
∴mmin=2011.
点评:本题考查数列的求和,考查等比数列的通项公式与求和公式的综合应用,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目