题目内容
已知双曲线的右焦点为F,过点F的动直线与双曲线相交与A、B两点,点C的坐标是(1,0).
(I)证明为常数;
(Ⅱ)若动点(其中为坐标原点),求点的轨迹方程.
解:由条件知,设,.
(I)当与轴垂直时,可设点的坐标分别为,,
此时=(1,)?(1,-)=-1
当不与轴垂直时,设直线的方程是.
代入,有.
则是上述方程的两个实根,所以,,
于是=
.
综上所述,为常数.
(II)解法一:设,则,,
,,由得:
即
于是的中点坐标为.
当不与轴垂直时,,即.
又因为两点在双曲线上,所以,,两式相减得
,即.
将代入上式,化简得.
当与轴垂直时,,求得,也满足上述方程.
所以点的轨迹方程是.
解法二:同解法一得……………………………………①
当不与轴垂直时,由(I) 有.…………………②
.………………………③
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,,由④⑤得,,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,,求得,也满足上述方程.
故点的轨迹方程是.
练习册系列答案
相关题目