题目内容

6.已知U=R,集合A={x|1≤x≤4},B={x|6-a≤x≤2a-1}.
(Ⅰ)若a=3,求A?B,B?(CUA);
(Ⅱ)若B⊆A,求a的取值范围.

分析 (Ⅰ)根据集合的运算法则计算即可.
(Ⅱ)对于集合B,讨论它是不是空集,再根据子集的定义进行求解.

解答 解:(Ⅰ)a=3,B={x|6-a≤x≤2a-1}={x|3≤x≤5},A={x|1≤x≤4},
∴A?B={x|1≤x≤5},
CUA={x|x<3,或x>4},
B?(CUA)={x|x|4<x≤5},
(Ⅱ)B⊆A,
当B=∅时,满足题意,即6-a>2a-1,解得a<$\frac{7}{3}$,
当B≠∅时,$\left\{\begin{array}{l}{6-a≤2a-1}\\{6-a≥1}\\{2a-1≤4}\end{array}\right.$,
解得$\frac{7}{3}$≤a≤$\frac{5}{2}$,
综上所述,a的取值范围为(-∞,$\frac{5}{2}$]

点评 此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网