Loading [MathJax]/jax/output/CommonHTML/jax.js

题目内容

9.已知公差不为零的等差数列{an},满足a1+a3+a5=12,且前7项和S7=35.
(1)求数列{an}的通项公式;
(2)若bn=a2n+1a2n1,数列{bn}的前n项和为Tn,求证:Tn-n<32

分析 (1)设等差数列{an}的公差为d且d≠0,根据等差数列的通项公式、前n项和公式列出方程组,求出d和a1,即可求出an
(2)由(1)和分裂常数法化简bn=a2n+1a2n1,利用裂项相消法求出Tn,即可证明Tn-n<32成立.

解答 解:(1)设等差数列{an}的公差为d且d≠0,
∵a1+a3+a5=12,且前7项和S7=35,
{3a1+6d=127a1+7×62×d=35,解得a1=2,d=1,
∴an=a1+(n-1)d=n+1;
(2)由(1)得,bn=a2n+1a2n1=n+12+1n+121=n+121+2n+121
=1+2n+121=1+2nn+2=1+1n1n+2
∴Tn=n+[(1-13)+(1214)+(1315)+…+(1n11n+1)+(1n1n+2)]
=n+1+12-1n+11n+2=32+n-1n+11n+2
∴Tn-n=32-1n+11n+232

点评 本题考查等差数列的通项公式、前n项和公式,裂项相消法求数列的和,考查化简、变形能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网