题目内容
9.已知公差不为零的等差数列{an},满足a1+a3+a5=12,且前7项和S7=35.分析 (1)设等差数列{an}的公差为d且d≠0,根据等差数列的通项公式、前n项和公式列出方程组,求出d和a1,即可求出an;
(2)由(1)和分裂常数法化简bn=a2n+1a2n−1,利用裂项相消法求出Tn,即可证明Tn-n<32成立.
解答 解:(1)设等差数列{an}的公差为d且d≠0,
∵a1+a3+a5=12,且前7项和S7=35,
∴{3a1+6d=127a1+7×62×d=35,解得a1=2,d=1,
∴an=a1+(n-1)d=n+1;
(2)由(1)得,bn=a2n+1a2n−1=(n+1)2+1(n+1)2−1=(n+1)2−1+2(n+1)2−1
=1+2(n+1)2−1=1+2n(n+2)=1+1n−1n+2,
∴Tn=n+[(1-13)+(12−14)+(13−15)+…+(1n−1−1n+1)+(1n−1n+2)]
=n+1+12-1n+1−1n+2=32+n-1n+1−1n+2,
∴Tn-n=32-1n+1−1n+2<32.
点评 本题考查等差数列的通项公式、前n项和公式,裂项相消法求数列的和,考查化简、变形能力,属于中档题.