ÌâÄ¿ÄÚÈÝ

7£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨sinx£¬-1£©£¬$\overrightarrow{n}$=£¨cosx£¬$\frac{3}{2}$£©£¬f£¨x£©=£¨$\overrightarrow{m}$+$\overrightarrow{n}$£©•$\overrightarrow{m}$£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ¼°µ¥µ÷µÝÔöÇø¼ä£»
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬Çóf£¨x£©µÄÖµÓò£»
£¨3£©½«f£¨x£©µÄͼÏó×óÒÆ$\frac{3¦Ð}{8}$¸öµ¥Î»ºóµÃg£¨x£©µÄͼÏó£¬Çóg£¨x£©ÔÚ[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]ÉϵÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓÃÊýÁ¿»ýÔËËãÐÔÖÊ¡¢ºÍ²î¹«Ê½Ó뱶½Ç¹«Ê½¿ÉµÃ£ºf£¨x£©=£¨sinx+cosx£©•sinx-$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$$sin£¨2x-\frac{¦Ð}{4}£©$£®¿ÉµÃ$T=\frac{2¦Ð}{2}$£¬ÓÉ$-\frac{¦Ð}{2}+2k¦Ð$¡Ü$2x-\frac{¦Ð}{4}$¡Ü$2k¦Ð+\frac{¦Ð}{2}$£¬½â³ö¼´¿ÉµÃ³öµ¥µ÷Çø¼ä£®
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬¿ÉµÃ$-\frac{¦Ð}{4}¡Ü2x-\frac{¦Ð}{4}$¡Ü$\frac{3¦Ð}{4}$£¬¿ÉµÃ$sin£¨2x-\frac{¦Ð}{4}£©$¡Ê$[-\frac{\sqrt{2}}{2}£¬1]$£¬¼´¿ÉµÃ³öf£¨x£©µÄÖµÓò£»
£¨3£©½«f£¨x£©µÄͼÏó×óÒÆ$\frac{3¦Ð}{8}$¸öµ¥Î»ºóµÃg£¨x£©µÄͼÏ󣬿ɵÃg£¨x£©=$\frac{\sqrt{2}}{2}$cos2x£¬ÀûÓÃx¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬¿ÉµÃcos2x¡Ê$[-\frac{1}{2}£¬1]$£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©f£¨x£©=£¨$\overrightarrow{m}$+$\overrightarrow{n}$£©•$\overrightarrow{m}$=£¨sinx+cosx£©•sinx-$\frac{1}{2}$
=sin2x+sinxcosx-$\frac{1}{2}$
=$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x-$\frac{1}{2}$
=$\frac{\sqrt{2}}{2}$$sin£¨2x-\frac{¦Ð}{4}£©$£®
¡à$T=\frac{2¦Ð}{2}$=¦Ð£¬
ÓÉ$-\frac{¦Ð}{2}+2k¦Ð$¡Ü$2x-\frac{¦Ð}{4}$¡Ü$2k¦Ð+\frac{¦Ð}{2}$£¬½âµÃ$k¦Ð-\frac{¦Ð}{8}$¡Üx¡Ü$\frac{3¦Ð}{8}+k¦Ð$£¬k¡ÊZ£®
¡àº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ[$k¦Ð-\frac{¦Ð}{8}$£¬$\frac{3¦Ð}{8}+k¦Ð$]£¬k¡ÊZ£®
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬
$-\frac{¦Ð}{4}¡Ü2x-\frac{¦Ð}{4}$¡Ü$\frac{3¦Ð}{4}$£¬
¡à$sin£¨2x-\frac{¦Ð}{4}£©$¡Ê$[-\frac{\sqrt{2}}{2}£¬1]$£¬
¡àf£¨x£©µÄÖµÓòΪ$[-\frac{1}{2}£¬\frac{\sqrt{2}}{2}]$£»
£¨3£©½«f£¨x£©µÄͼÏó×óÒÆ$\frac{3¦Ð}{8}$¸öµ¥Î»ºóµÃg£¨x£©µÄͼÏó£¬
¡àg£¨x£©=$\frac{\sqrt{2}}{2}$$sin[2£¨x+\frac{3¦Ð}{8}£©-\frac{¦Ð}{4}]$=$\frac{\sqrt{2}}{2}$cos2x£¬
¡ßx¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬
¡àcos2x¡Ê$[-\frac{1}{2}£¬1]$£¬
¡à$\frac{\sqrt{2}}{2}$cos2x¡Ê$[-\frac{\sqrt{2}}{4}£¬\frac{\sqrt{2}}{2}]$£®
¡àº¯Êýg£¨x£©µÄ×î´óֵΪ£º$\frac{\sqrt{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿ÊýÁ¿»ýÔËËãÐÔÖÊ¡¢ºÍ²î¹«Ê½¡¢±¶½Ç¹«Ê½¡¢Èý½Çº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø