题目内容
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c.已知.
(Ⅰ)求的值;
(Ⅱ)若,△ABC的周长为7,求b.
【答案】(Ⅰ)3(Ⅱ)b=3.
【解析】
(Ⅰ)由正弦定理转化得到sinBcosA+sinAcosB=3(sinCcosB+sinBcosC),化简得到sinC=3sinA,即得解;
(Ⅱ)由余弦定理得到:b=3a,结合周长,可求解b.
(Ⅰ)∵,
即bcosA﹣3bcosC=3ccosB﹣acosB,
∴由正弦定理可得sinBcosA+sinAcosB=3(sinCcosB+sinBcosC),
可得sin(A+B)=3sin(B+C),即sinC=3sinA,
∴3.
(Ⅱ)∵3,可得c=3a,
又,
∴由余弦定理可得b2=a2+c2﹣2accosB=a2+c2ac=a2+9a2﹣a2=9a2,
可得b=3a,
∵△ABC的周长为7,即a+b+c=a+3a+3a=7,
∴解得a=1,b=3.
练习册系列答案
相关题目
【题目】某学校为了解学生的体育锻炼时间,采用简单随机抽样方法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计该校4000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人?
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男女各1人的概率.