题目内容

设实数x,y满足
x+y-3≤0
y-
1
2
x≥0
x-1≥0
,则 u=
y
x
-
x
y
的取值范围为(  )
A、[
1
2
,2]
B、[-
2
3
,2]
C、[-
2
3
3
2
]
D、[-
3
2
3
2
]
分析:画出可行域,将目标函数变形,赋予几何意义,是可行域中的点与点(0,0)连线的斜率,由图求出取值范围,从而求出所求即可.
解答:精英家教网解:画出可行域:
u=
y
x
-
x
y

设k=
y
x
表示可行域中的点与点(0,0)连线的斜率,
由图知k∈[
1
2
,2]
1
k
∈[
1
2
,2]
u=
y
x
-
x
y
=k-
1
k
取值范围为[-
3
2
3
2
]

故选:D
点评:本题考查画出可行域、关键将目标函数通过分离参数变形,赋予其几何意义、考查数形结合的数学思想方法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网