题目内容
【题目】在正三棱柱ABC﹣A1B1C1中,已知AB=CC1=2,则异面直线AB1和BC1所成角的余弦值为( )
A.0
B.
C.﹣
D.
【答案】D
【解析】解:∵在正三棱柱ABC﹣A1B1C1中,AB=CC1=2, ∴以A为原点,在平面ABC中过A作AC的垂直为x轴,
以AC为y轴,AA1为z轴,建立空间直角坐标系,
则A(0,0,0),B1( ,1,2),B( ,1,0),C1(0,2,2),
=( ), =(﹣ ,1,2),
设异面直线AB1和BC1所成角为θ,
则cosθ= = = .
∴异面直线AB1和BC1所成角的余弦值为 .
故选:D.
以A为原点,在平面ABC中过A作AC的垂直为x轴,以AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB1和BC1所成角的余弦值.
练习册系列答案
相关题目