题目内容
(1)如图,设点P,Q是线段AB的三等分点,若,,试用,表示,,并判断与的关系;
(2)受(1)的启示,如果点A1,A2,A3,…,An-1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.
解:(1)如图:点P、Q是线段AB的三等分点=,
则,同理,
所以
即:,
(2)设A1,A2.,…,An-1是AB的n等分点,
则;
证:A1,A2,,An-1是线段n≥2的等分点,
先证明:(1≤k≤n-1,n、k∈N+).
由,,
因为和是相反向量,
则,
所以.
记,
相加得
∴.
分析:(1)由三角形法则及向量共线的数乘表示,分别用向量、表示出,相加即得用向量、表示的表达式,进而判断与的关系;
(2)受(1)的启示,如果点A1,A2,A3,…,An-1是AB的n(n≥3)等分点,归纳得出猜想,再数学归纳法证明结论.
点评:本小题主要考查平行向量与共线向量、归纳推理、数学归纳法等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
则,同理,
所以
即:,
(2)设A1,A2.,…,An-1是AB的n等分点,
则;
证:A1,A2,,An-1是线段n≥2的等分点,
先证明:(1≤k≤n-1,n、k∈N+).
由,,
因为和是相反向量,
则,
所以.
记,
相加得
∴.
分析:(1)由三角形法则及向量共线的数乘表示,分别用向量、表示出,相加即得用向量、表示的表达式,进而判断与的关系;
(2)受(1)的启示,如果点A1,A2,A3,…,An-1是AB的n(n≥3)等分点,归纳得出猜想,再数学归纳法证明结论.
点评:本小题主要考查平行向量与共线向量、归纳推理、数学归纳法等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关题目