题目内容
(1)如图,设点P,Q是线段AB的三等分点,若
=
,
=
,试用
,
表示
,
,并判断
+
与
+
的关系;
(2)受(1)的启示,如果点A1,A2,A3,…,An-1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.
OA |
a |
OB |
b |
a |
b |
OP |
OQ |
OP |
OQ |
OA |
OB |
(2)受(1)的启示,如果点A1,A2,A3,…,An-1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.
分析:(1)由三角形法则及向量共线的数乘表示,分别用向量
、
表示出
,
,相加即得用向量
、
表示
+
的表达式,进而判断
+
与
+
的关系;
(2)受(1)的启示,如果点A1,A2,A3,…,An-1是AB的n(n≥3)等分点,归纳得出猜想
+
+…+
=
(
+
),再数学归纳法证明结论.
a |
b |
OP |
OQ |
a |
b |
OP |
OQ |
OP |
OQ |
OA |
OB |
(2)受(1)的启示,如果点A1,A2,A3,…,An-1是AB的n(n≥3)等分点,归纳得出猜想
OA1 |
OA2 |
OAn-1 |
n-1 |
2 |
a |
b |
解答:解:(1)如图:点P、Q是线段AB的三等分点
=
+
=
+
(
-
),
则
=
+
,同理
=
+
,(2分)
所以
+
=
+
(4分)
即:
=
+
,
=
+
,
+
=
+
,
(2)设A1,A2.,…,An-1是AB的n等分点,
则
+
+…+
=
(
+
);
证:A1,A2,,An-1是线段n≥2的 Sn-1=
+
an-1+
等分点,
先证明:
+
=
+
(1≤k≤n-1,n、k∈N*).
由
=
+
,
=
+
,
因为
和
是相反向量,
则
+
=0,
所以
+
=
+
.
记 S=
+
+
+…+
+
,
S=
+
+…+
+
相加得 2S=(
+
)+(
+
)+…+(
+
)=(n-1)(
+
)
∴
+
+…+
=
(
+
).
OP |
OA |
AP |
OA |
1 |
3 |
OB |
OA |
则
OP |
2 |
3 |
a |
1 |
3 |
b |
OQ |
1 |
3 |
a |
2 |
3 |
b |
所以
OP |
OQ |
a |
b |
即:
OP |
2 |
3 |
a |
1 |
3 |
b |
OQ |
1 |
3 |
a |
2 |
3 |
b |
OP |
OQ |
OA |
OQ |
(2)设A1,A2.,…,An-1是AB的n等分点,
则
OA1 |
OA2 |
OAn-1 |
n-1 |
2 |
a |
b |
证:A1,A2,,An-1是线段n≥2的 Sn-1=
1 |
4 |
a | 2 n |
1 |
2 |
1 |
4 |
先证明:
OAk |
OAn-k |
OA |
OB |
由
OAk |
OA |
AAk |
OAn-k |
OB |
BAn-k |
因为
AAk |
BAn-k |
则
AAk |
BAn-k |
所以
OAk |
OAn-k |
OA |
OB |
记 S=
OA1 |
OA2 |
OA3 |
OAn-2 |
OAn-1 |
S=
OAn-1 |
OAn-2 |
OA2 |
OA1 |
相加得 2S=(
OA1 |
OAn-1 |
OA2 |
OAn-2 |
OAn-1 |
OA1 |
OA |
OB |
∴
OA1 |
OA2 |
OAn-1 |
n-1 |
2 |
a |
b |
点评:本小题主要考查平行向量与共线向量、归纳推理、数学归纳法等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关题目